Mały, prosty, a jednocześnie gotów na podjęcie poważnych zadań. Implementacja gładka i szybka, możliwości szerokie, dostosowywanie się do zmiennego otoczenia błyskawiczne. Czy pojęcia mikro i skalowanie są możliwe do pogodzenia, czy też stoją w opozycji do siebie?
Odpowiedzi jest zapewne wiele, w artykule przedstawiona zostanie jedna z nich. Odpowiedź ta brzmi: Payara Micro w chmurze UniCloud.
Payara Micro[1] jest lekkim serwerem aplikacji, stworzonym w oparciu o GlassFish 4.1 ze wsparciem Java EE 7. Zajmując zaledwie 70 MB, serwer wyposażony został w mechanizmy automatycznego klastrowania Hazelcast, dystrybucję pamięci podręcznej Payara JCache, proste zarządzanie umożliwiające uruchamianie aplikacji .war bezpośrednio z linii komend (bez instalacji serwera aplikacji)[2], wyposażonym we wbudowane API Java. Payara Micro został zoptymalizowany pod kątem nowoczesnej infrastruktury opartej o kontenery. W prosty sposób może zostać zaimplementowany w chmurze, dostarczając zautomatyzowane klastrowanie aplikacji opartych o Java EE.
Implementacja Payara Micro w UniCloud
Pakiet Payara Micro został przygotowany z wykorzystaniem minimalnej ilości węzłów (kontenerów), zawiera jednak wszystkie wymagane narzędzia pozwalające na skalowanie horyzontalne, pozwalające na elastyczne przyjęcie zwiększonego ruchu. Możemy w ten sposób wydajnie obsłużyć ruch przychodzący nawet w przypadku gwałtownego zwiększenia zainteresowania usługą, jak ma to często miejsce podczas emisji materiału reklamowego w mediach.
Implementacja rozwiązania została przygotowana przez firmę Jelastic[3], która umieściła w GitHub repozytoria[4] przygotowane i zoptymalizowane pod kątem UniCloud.
Przetestowanie prezentowanego rozwiązania możliwe jest po założeniu konta trial na platformie UniCloud (www.unicloud.pl) |
Rozwiązanie zostało zbudowane z wykorzystaniem kontenerów Docker, z następujących obrazów:
Instalacja jest procesem szybkim i zautomatyzowanym, sprowadza się do importu odpowiedniego projektu z GitHub poprzez panel UniCloud:
W oknie, które się pojawi, należy wprowadzić podstawowe parametry tworzonego środowiska, nacisnąć Zainstaluj, i… to właściwie wszystko!
Po chwili pakiety zostaną dostarczone:
Operacje tworzenia i konfigurowania klastra przebiegają w sposób zautomatyzowany i kończą się utworzeniem kompletnego, skonfigurowanego, gotowego do pracy środowiska, z uruchomionym klastrem Payara Micro, przygotowanym do automatycznego dodawania i usuwania węzłów:
W bazie wiedzy UniCloud[5] przedstawiamy pełną procedurę testów, według której możemy przekonać się, że węzły są dodawane i usuwane automatycznie, bez konieczności monitorowania obciążenia, zapewniając nam jednocześnie odpowiednią wydajność i optymalizację kosztów infrastruktury. Procedura obrazuje automatyczne dodawanie i usuwanie węzłów zależnie od zmieniającego się obciążenia.
Mikrousługi, przygotowane z wykorzystaniem minimalnej ilości zasobów, pozwalają na maksymalne zaoszczędzenie opłat za dzierżawę zasobów, jednocześnie dzięki automatycznemu skalowaniu w obu kierunkach, ograniczają ryzyko braku dostępności. W rezultacie uzyskujemy nasz cel: optymalizację wydajności. Czy to rozwiązanie jest ciekawe? Mamy nadzieję, że tak, zarówno dla świata inżynierów jak i ekonomistów. Zachęcamy do samodzielnego przetestowania rozwiązania.
Info:
[1] Payara, Payara Micro:
http://www.payara.fish/payara_micro
[2] Steve Millidge, Introducing Payara Micro:
http://blog.payara.fish/introducing-payara-micro
[3] Jelastic, Blog:
http://blog.jelastic.com/2017/02/21/payara-micro-auto-scalable-cluster-for-javaee-microservices
[4] GitHub, Jelastic JPS Collection:
https://github.com/jelastic-jps/payara
[5] Baza Wiedzy UniCloud:
http://pomoc.unicloud.pl/unicloud/srodowiska-serwery/payara-micro-automatycznie-skalowalny-klaster-mikrouslug
Partnerzy technologiczni
Strona korzysta z plików cookies w celu realizacji usług i zgodnie z Polityką prywatności. Przeglądanie strony jest jednoznaczne z akceptacją polityki prywatności.